Impact of Technology in Filter Design for Noise Removal from Pathological Noisy Speech Signal & its Preprocessing
نویسندگان
چکیده
In the recent year the trend towards automated analysis of pathological noise signal has gain momentum. The awkwardness of analog equipment has simulated development of digital computer techniques for processing and analysis of pathological speech signal in patient care system. The above filter design techniques & prepossessing of speech signal can be used in any speech processing application. This paper discusses pathological speech signal of patients and their preprocessing. In prepossessing, Speech signal is passed through Moving Average (M.A) filter, High pass (H.P) filter for removal of noise. The output of filter is framed & these frames are passed through window. Typically, hamming window is used. This preprocessed output can be used for pathological voice recognition, speech identification, speaker identification & many more application.
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملA Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement
A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملSpeech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
متن کاملCircular Mean Filtering For Textures Noise Reduction
In this paper, a special preprocessing operations (filter) is proposed to decrease the effects of noise of textures. This filter using average of circular neighbor points (Cmean) to reduce noise effect. Comparing this filter with other average filters such as square mean filter and square median filter indicates that it provides more noise reduction and increases the classification accuracy...
متن کامل